×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Comprehensive Analysis of Russian-Language Texts Based on Transformer-Type Neural Network Models

    This article presents a comprehensive analysis of Russian-language texts utilizing neural network models based on the Bidirectional Encoder Representations from Transformers (BERT) architecture. The study employs specialized models for the Russian language: RuBERT-tiny, RuBERT-tiny2, and RuBERT-base-cased. The proposed methodology encompasses morphological, syntactic, and semantic levels of analysis, integrating lemmatization, part-of-speech tagging, morphological feature identification, syntactic dependency parsing, semantic role labeling, and relation extraction. The application of BERT-family models achieves accuracy rates exceeding 98% for lemmatization, 97% for part-of-speech tagging and morphological feature identification, 96% for syntactic parsing, and 94% for semantic analysis. The method is suitable for tasks requiring deep text comprehension and can be optimized for processing large corpora.

    Keywords: BERT, Russian-language texts, morphological analysis, syntactic analysis, semantic analysis, lemmatization, RuBERT, natural language processing, NLP