

Повышение эффективности управления микроклиматом теплиц с использованием нейросетевых технологий и распределённых

встраиваемых систем

В.А. Егунов¹, А.А. Кузьменко¹, А.С. Борисов¹, О.А. Старовойтова²

¹Волгоградский государственный технический университет ² Санкт-Петербургский государственный университет аэрокосмического приборостроения

Аннотация: В данной статье рассматриваются особенности разработки и применения нейроподобной автоматизированной системы управления микроклиматом тепличного комплекса. Актуальность темы обусловлена необходимостью повышения устойчивости сельскохозяйственного производства в условиях роста населения и климатических изменений. Представлена архитектура интеллектуальной системы, включающая иерархическую сенсорную сеть на базе микроконтроллеров STM32, модуль анализа на Raspberry Pi 5 с нейросетевой обработкой данных и распределённый исполнительный уровень. Описаны методы обработки телеметрии, алгоритмы адресации и опроса устройств, а также нейросетевые модели (YOLO и EfficientNetB3) для диагностики состояния растений. Проведён эксперимент по классификации заболеваний растений, продемонстрировавший высокую точность и возможность применения системы в режиме реального времени.

Ключевые слова: автоматизация теплиц, микроклимат, нейросетевой анализ, STM32, Raspberry Pi, глубокое обучение, YOLO, EfficientNet, IoT, классификация заболеваний растений.

Введение. Актуальность автоматизации теплиц и управления микроклиматом обусловлена прогнозируемым ростом населения до 9,7 млрд к 2050 г. [1] и усиливающимся воздействием климатических изменений на аграрное производство [2]. Традиционные системы управления, основанные на линейных моделях или эмпирических правилах, слабо адаптируются к внешним возмущениям, что приводит к ошибкам до 15–20 %, снижению урожайности и перерасходу энергии [3]. Автоматизированные комплексы всё шире применяются для снижения зависимости от ручного труда в потенциально опасных условиях [4] и находят применение в различных сферах — от сельского хозяйства до медицины и обороны [5].

Метод нелинейного прогнозирующего управления (NMPC) улучшает стабилизацию за счёт учёта будущих возмущений, однако его

вычислительная сложность ограничивает применение в реальном времени [6]. Внедрение ІоТ и облачных технологий позволяет оперативно собирать данные (температура, влажность, CO₂ и др.) и использовать прогнозные алгоритмы, снижая энергозатраты на 15-25 % и уменьшая необходимость постоянного мониторинга [7]. Глубокие нейронные сети успешно выявляют нелинейные зависимости между параметрами микроклимата и ростом растений, обеспечивая точность прогноза температуры до 1,5 °C против 5 °C у классических моделей, при меньших вычислительных затратах [8]. Гибридные системы, объединяющие ІоТ, нейросетевые методы и глубокое обучение (DRL), более усиленное демонстрируют эффективное И энергосберегающее управление микроклиматом сравнению ПО с традиционными MPC и чистыми RL-подходами [9].

Архитектура. Разрабатываемая система реализует нейроподобную архитектуру распределённого мониторинга и управления. В её основе лежит трёхкомпонентная модель, состоящая из чувствительной, анализирующей и исполнительной частей (рисунок 1).

Рисунок 1. – Архитектура информационной системы

Анализирующая часть (ядро) отвечает за прием телеметрических данных, их обработку с помощью нейросетевых алгоритмов и выработку управляющих сигналов. Чувствительная часть (аксон) обеспечивает сбор

полевых данных и передачу их в ядро. Исполнительная часть (дендрит) распределённо доставляет сформированные ядром команды к приводам и исполнительным механизмам.

Чувствительная часть («аксон нейрона»). Чувствительная часть реализована в виде двухуровневой иерархии: высокоуровневого управляющего узла на базе STM32H723VGT6 и множества низкоуровневых сенсорных модулей на STM32G0B1CBT6 (рисунок 2)

Рисунок 2. - Структурно-функциональная единица чувствительной части

Управляющий модуль (мастер) координирует подчинённые устройства, осуществляет конфигурацию и передаёт данные на сервер (Raspberry Pi 5) через Ethernet-контроллер W5500 с постоянным TCP-соединением. Также он обрабатывает изображения с камеры OV5640 (5 Мп) и данные NPC-сенсора, оценивающего агрохимические параметры почвы (электропроводимость, pH, концентрации калия, фосфора, азота и солей).

Низкоуровневые модули (слейвы) собирают данные с цифровых сенсоров: BME280 (температура, влажность, давление), DS18B20 (температура почвы), TSL2591 (освещённость), ёмкостные датчики (влажность почвы). Обмен между узлами осуществляется по интерфейсу RS-485 с AutoDirection, реализованным на чипе MAX13487EESA+.

Алгоритм работы чувствительной подсистемы включает две фазы: обнаружение (Discovery) и опрос (Polling), реализуемые по интерфейсу RS-485.

Процесс обнаружения и адресации узлов представлен на диаграмме последовательности (рис. 3). После подачи питания мастер-контроллер STM32H723 формирует широковещательный кадр CMD_START_DISCOVERY, задавая параметры тайм-аутов и максимального окна случайной задержки (max_backoff). Каждый слейв STM32G0, получив этот сигнал, активирует режим Listen-Before-Talk с рандомизированным back-off: при свободной шине отправляется сообщение CMD_ANNOUNCE, содержащее уникальный UID и тип сенсора.

Мастер подтверждает получение через CMD_ANNOUNCE_ACK, а по завершении окна сбора формирует пакет CMD_ASSIGN_ADDRS, назначая каждому слейву уникальный адрес. После этого узлы активируют аппаратную фильтрацию UART и переходят в режим ожидания команд.

В фазе опроса (Polling) STM32H7 последовательно рассылает запросы CMD_POLL_DATA на адреса зарегистрированных узлов. Слейв, распознав команду, активирует сенсоры, формирует ответ CMD_DATA_RESPONSE с показаниями и UID, и отправляет его обратно. Мастер обрабатывает ответы и передаёт данные на верхний уровень для анализа. Обе фазы обеспечивают детерминированную регистрацию узлов и энергосберегающий опрос, минимизируя активное время слейвов.

Рисунок 3. - Диаграмме последовательности алгоритма

Анализирующая нейрона»). Средний часть («тело уровень нейроподобной архитектуры («тело нейрона»), реализован на одноплатном компьютере Raspberry Pi 5. Он выполняет функции централизованной анализа и маршрутизации информации, поступающей от обработки, чувствительной части, а также координации работы исполнительных Архитектурно компонент выступает механизмов. ЭТОТ В роли интеграционного узла между полевыми модулями, нейросетевыми сервисами и пользовательским интерфейсом (рисунок 4).

Рисунок 4. — Архитектура анализирующей части («тела нейрона»)

В базовом режиме ядро системы параллельно обрабатывает два потока: телеметрию и изображения, поступающие от модулей через TCP (W5500), и команды пользователя, передаваемые через веб-интерфейс Flask. При поступлении данных активируется режим обработки: изображения декодируются, значения сенсоров нормализуются и сохраняются в базу данных PostgreSQL с привязкой ко времени и источнику.

Затем запускается нейросетевой анализ: YOLO сегментирует листья, а EfficientNetB3 классифицирует признаки заболеваний. Результаты анализа и рекомендации по управлению микроклиматом сохраняются в БД и при необходимости транслируются пользователю в реальном времени.

Подсистема команд принимает HTTP-запросы, сохраняет их в очередь и передаёт C++-сервису через ZeroMQ. После десериализации команда направляется в исполнительный модуль, а результат выполнения фиксируется в БД. По завершении система возвращается в исходное состояние ожидания событий.

Хранилище данных системы построено на основе реляционной модели и реализовано в виде иерархически организованной схемы PostgreSQL, предназначенную для хранения конфигурации устройств, показаний

сенсоров, команд управления и результатов нейросетевого анализа. Центральной сущностью является устройство, объединяющее один или несколько модулей (сенсорных или исполнительных), привязанных к конкретному участку.

База данных содержит информацию о параметрах модулей, показаниях датчиков, действиях исполнительных механизмов, изображениях с камер и результатах их обработки, а также об операциях управления, событиях и уведомлениях.

Архитектура серверного модуля. Серверный модуль реализован в виде четырёхуровневой архитектуры, обеспечивающей высокую производительность и масштабируемость при работе с большим числом устройств. Взаимодействие компонентов показано на рисунке 5.

На нижнем уровне располагаются структуры данных (например, DeviceInfo и пакеты протокола), формализующие сообщения и описывающие подключённые устройства. Хранилище зарегистрированных узлов реализовано через unordered_map, использующую хэш-функции для UID.

Слой парсинга (ProtocolParser) обеспечивает преобразование входящих TCP-пакетов в структуры команд и вызов соответствующих обработчиков (например, on_register, on_data_batch).

Каждое TCP-соединение обрабатывается отдельным объектом TcpSession, в котором реализованы обработчики команд, регистрация устройств, обновление таймингов и формирование ответов. Состояние устройств поддерживается в DeviceRegistry.

Для масштабирования используется пул событийных контекстов (IoContextPool) на базе Boost.Asio, позволяющий равномерно распределять соединения между потоками. Класс TcpServer управляет приёмом подключений и созданием сессий.

Рисунок 5. — Архитектура серверного модуля и его компонент

Исполнительный уровень («дендрит нейрона»). Исполнительный реализован распределённой модулей, уровень В виде системы преобразующих аналитические результаты в физические воздействия. На основе метрик нейросетевого анализа формируются команды с заданными (температура, влажность, освещённость др.), параметрами И которые передаются по ТСР на коллекторный контроллер.

Коллектор принимает команды, управляет насосом через преобразователь частоты, маршрутизирует данные и команды к групповым контроллерам и обеспечивает обратную связь с ядром системы. Групповые контроллеры управляют исполнительными устройствами: регулируют краны,

активируют освещение и нагрев, управляют системой подкормки и промывки.

Замкнутый контур управления с датчиками давления и расхода позволяет адаптировать режим работы в реальном времени. Телеметрия также доступна пользователю через интерфейс мониторинга.

Нейросетевой анализ изображения. Эксперименты проводились на рабочей станции с графическим ускорителем NVIDIA GeForce RTX 2060 (Compute Capability 7.5) под управлением TensorFlow 2.18. Обучение модели представлено на рисунке 6.

Do you ut	ant model	acke ver	to halt t	ho tooir	ing [v/c]						
n n	and mouel	asks you	to nait t	ine crain	≖n8 [X/u]						
Epoch	Loss	Accuracy	V_loss	V_acc	LR	Next LR	Monitor	% Improv	Duration		
WARNING:	All log	messages	before abs	1::Initi	alizeLog()	is calle	d are writ	ten to ST	TDERR		
I0000 00:	:00:17324	60679.523	474 232	1 servic	e.cc:148]	XLA servi	.ce 0x7f306	4003810 in	initialized for platform CUDA (this does not guarantee that XLA will be		
used). De	evices:										
I0000 00:	:00:17324	60679.523	661 232	1 servic	e.cc:156]	StreamE	xecutor de	vice (0):	: NVIDIA GeForce RTX 2060, Compute Capability 7.5		
2024-11-2	24 18:04:	40.617325	: I tensor	flow/com	piler/mlir	/tensorfl	.ow/utils/d	lump_mlir_u	_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_I		
EPRODUCER	<pre>R_DIRECTO</pre>	RY to en	able.								
10000 00:	10000 00:00:1732469711.294693 2321 device compiler.hit88 Compiled cluster using XLA! This line is logged at most once for the lifetime of the proces										
5.		00/11.204			_compiler.		mpiled cid	iscer using	ing were made and adding the most offer for the arterane of the prote		
1 /40	8.541	37.226	5.77861	46.424	0.00010	0.00010	accuracy	0.00	243.96		
2 /40	4.237	58.670	2.69725	81.571	0.00010	0.00010	accuracy	57.60	139.55		
3 /40	2.157	84.042	1.41384	96.270	0.00010	0.00010	accuracy	43.24	144.55		
4 /40	1.362	93.774	1.08670	95.173	0.00010	0.00010	val_loss	23.14	142.68		
5 /40	1.061	96.017	0.89696	97.192	0.00010	0.00010	val_loss	17.46	146.58		
6 /40	0.910	96.599	0.74497	99.079	0.00010	0.00010	val_loss	16.94	141.07		
/ /40	0.815	97.306	0.64146	98.991	0.00010	0.00010	vai_loss	13.89	138.40		
8 /40	0.741	97.323	0.58899	99.122	0.00010	0.00010	val_loss	8.18	138.29		
10 /40	0.701	98 201	0.57592	98 464	0.00010	0.00010	val_loss	6 77	137 91		
11 /40	0.617	98.129	0.50339	99.166	0.00010	0.00010	val loss	6.25	138.02		
12 /40	0.598	98.129	0.51285	99.298	0.00010	0.00005	val loss	-1.88	141.81		
13 /40	0.528	98.864	0.42464	99.473	0.00005	0.00005	val_loss	15.64	143.28		
14 /40	0.507	98.963	0.40758	99.386	0.00005	0.00005	val_loss	4.02	154.69		
15 /40	0.495	98.799	0.39642	99.166	0.00005	0.00005	val_loss	2.74	145.81		
16 /40	0.475	98.996	0.38067	99.561	0.00005	0.00005	val_loss	3.97	142.97		
17 /40	0.460	99.073	0.36584	99.517	0.00005	0.00005	val_loss	3.90	149.04		
18 /40	0.452	99.117	0.35903	99.430	0.00005	0.00005	val_loss	1.86	152.13		
19 /40	0.445	90.905	0.34465	99.51/	0.00005	0.00005	val_loss	2.95	148.89		
20 /40	0.423	99.122	0.33027	99.561	0.00005	0.00005	val_loss	2.00	152.82		
22 /40	0.412	99.111	0.32515	99,473	0.00005	0.00005	val loss	1.55	149.81		
23 /40	0.412	99.040	0.31492	99.254	0.00005	0.00005	val_loss	3.15	143.62		
24 /40	0.400	99.084	0.32584	99.210	0.00005	0.00002	val_loss	-3.47	141.74		
25 /40	0.385	99.216	0.29975	99.605	0.00002	0.00002	val_loss	4.82	137.46		
26 /40	0.377	99.303	0.29885	99.386	0.00002	0.00002	val_loss	0.30	139.02		
27 /40	0.375	99.265	0.29285	99.649	0.00002	0.00002	val_loss	2.01	144.09		
28 /40	0.369	99.210	0.28569	99.561	0.00002	0.00002	val_loss	2.44	141.77		
29 /40	0.363	99.325	0.29657	99.561	0.00002	0.00001	vai_loss	-3.81	148.04		
30 /40	0.360	99.314	0.28412	99.561	0.00001	0.00001	vai_loss	0.55	145 67		
32 /40	0.352	99.408	0.27566	99.605	0.00001	0.00001	val loss	2.07	140.93		
33 /40	0.352	99.287	0.28110	99.561	0.00001	0.00001	val loss	-1.98	145.22		
34 /40	0.347	99.303	0.27330	99.605	0.00001	0.00001	val_loss	0.86	144.06		
35 /40	0.349	99.237	0.27262	99.561	0.00001	0.00001	val_loss	0.25	142.17		
36 /40	0.342	99.391	0.26972	99.605	0.00001	0.00001	val_loss	1.06	141.91		
37 /40	0.345	99.386	0.26989	99.693	0.00001	0.00000	val_loss	-0.06	140.29		
38 /40	0.342	99.408	0.26752	99.649	0.00000	0.00000	val_loss	0.81	140.52		
39 /40	0.345	99.270	0.26795	99.649	0.00000	0.00000	vai_loss	-0.16	142.03		
40 /40	0.340	99.413	0.26836	27 0	0.00000	0.00000	vai_loss	-0.31	133.53		
charunug	aturng erapsed time was ito nours, 57.0 minutes, 41.00 seconds)										

Рисунок 6. – Обучение модели

Для более эффективного исполнения вычислительных графов задействован XLA-компилятор (Accelerated Linear Algebra). В целях воспроизводимости всех детерминированных процедур (инициализация весов, случайное перемешивание батчей, аугментация изображений) был

установлен фиксированный seed = 42 как для Python random, так и для NumPy и TensorFlow.

В качестве основы экстрактора признаков была выбрана сеть EfficientNetB3, предварительно обученная на ImageNet, с отключённым классификационным блоком (include top=False). На выходе её последнего сверточного блока формируется тензор размерности 1536. Далее последовательно применялись: BatchNormalization (6 144 параметра) для выравнивания распределения активаций, Dense(256) + ReLU + регуляризация L2(λ =0.016) по весам и L1(λ =0.006) по смещениям (393 472 параметра) для признаков, Dropout(0.45) для борьбы обучения высокоуровневых С перенастройкой, Dense(15) + softmax (3 855 параметров) для окончательной классификации на 15 классов.

Как видно на рисунке 7, базовый блок EfficientNetB3 насчитывает 10 783 535 параметров, что вместе с дополнительными слоями даёт суммарно 11 187 006 параметров, из которых 11 096 631 обучаемые и 90 375 замороженных.

Для решения задачи многоклассовой классификации использовалась функция потерь categorical_crossentropy и оптимизатор Adam с начальным шагом обучения learning_rate=1×10⁻⁴, β₁=0.9, β₂=0.999. В процессе тренировки были подключены два callback-механизма:

1. EarlyStopping(monitor='val_loss',patience=5,restore_best_weights=True)— досрочная остановка при отсутствии снижениявалидационной потери в течение пяти эпох;

2. ReduceLROnPlateau (monitor='val_loss', factor=0.5, patience=3, min_lr=1×10⁻⁶) — снижение скорости обучения вдвое при стагнации метрики на валидации.

Перед подачей в модель изображения масштабировались до 224×224 пикселей для унификации входных данных, нормализовались в диапазоне [0,

1] для ускорения сходимости, а также подвергались аугментации «на лету» с использованием tf.data — включая горизонтальное отражение с вероятностью 50% и случайное масштабирование в пределах $\pm 10\%$ от исходного размера.

Layer (type)	Output Shape	Param #	
efficientnetb3 (Functional)	(None, 1536)	10,783,535	
batch_normalization_9 (BatchNormalization)	(None, 1536)	6,144	
dense_16 (Dense)	(None, 256)	393,472	
dropout_8 (Dropout)	(None, 256)	e	
dense_17 (Dense)	(None, 15)	3,855	

→ Mo	del:	"sequential_8"
------	------	----------------

model.summarv()

Total params: 11,187,006 (42.68 MB)

Trainable params: 11,096,631 (42.33 MB) Non-trainable params: 90,375 (353.03 KB)

Рисунок 7. - Структура модели: EfficientNetB3 \rightarrow BatchNorm \rightarrow $Dense(256) \rightarrow Dropout(0.45) \rightarrow Dense(15).$

На рисунке 8(а) и рисунке 8(б) приведены кривые изменения функции потерь и точности на обучающей и валидационной выборках в ходе 40 эпох. Уже к 5-й эпохе потери резко снижаются: с ≈ 8.5 до 0.8 на обучении и с ≈ 5.5 до 0.7 на валидации, а после 10-й стабилизируются в пределах 0.4-0.3, что свидетельствует о быстром обучении модели. Минимальная валидационная потеря достигается на 38-й эпохе, после чего кривые выравниваются, признаков переобучения не наблюдается. Начальная точность составляет около 40-45 %, но уже к 5-й эпохе обе метрики превышают 95 %, а к 37-й достигается максимум: валидационная точность ≈99.6 %. Динамика метрик показывает, что оптимальное состояние достигается в пределах 35-40 эпох, после чего улучшения становятся незначительными и обучение может быть завершено с помощью EarlyStopping(patience=5).

На тестовой выборке 2 279 изображений, по 15 классам и здорового безошибочную растений, модель практически состояния показала классификацию (рисунок 9).

Рисунок 8. - Динамика обучения и валидации нейросети:

а — кривая изменения тренировочной (красная) и валидационной (зелёная) потерь, отметка синим цветом показывает лучшую эпоху;

б — кривая изменения точности на обучающей (красная) и валидационной (зелёная) выборках, отметка синим цветом показывает лучшую эпоху.

Общая точность (accuracy) составила 100 %, при этом значения precision, recall и F1-score для каждого класса находились в диапазоне от 0.99 до 1.00 (рисунок 9). Так, для классов «Pepper_bell_Bacterial_spot», «Pepper_bell_healthy», «Potato_Early_blight» и ряда других precision и recall достигали единицы, а для «Potato_Late_blight», «Tomato_Early_blight» и «Tomato_Target_Spot» значения этих метрик были равны 0.99, что обусловлено округлением при поддержке в 100–191 образец на каждый класс.

Матрица ошибок (рисунок 10) подтверждает согласованность предсказаний — все образцы каждой категории правильно отнесены к своему классу, вне диагонали не обнаружено ни одного ложного срабатывания или пропуска.

precision recall f1-score support 1.00 Pepper,_bell___Bacterial_spot 1.00 1.00 99 Pepper,_bell___healthy 1.00 1.00 1.00 148 1.00 1.00 1.00 Potato___Early_blight 100 1.00 1.00 1.00 1.00 100 0.99 Potato___Late_blight Potato___healthy 1.00 15 Tomato___Bacterial_spot 1.00 1.00 1.00 213 1.00 1.00 1.00 0.99 1.00 0.99 Tomato___Early_blight 100 191 Tomato___Late_blight Tomato___Leaf_Mold 1.00 1.00 1.00 95 1.00 1.00 1.00 0.99 1.00 1.00 Tomato___Septoria_leaf_spot 177 168 Tomato____Spider_mites Two-spotted_spider_mite 141 Tomato___Target_Spot 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Tomato___Tomato_Yellow_Leaf_Curl_Virus 536 Tomato___Tomato_mosaic_virus 37 Tomato___healthy 0.99 1.00 1.00 159 1.00 2279 accuracy macro avg 1.00 1.00 1.00 2279 weighted avg 1.00 1.00 1.00 2279

print(classification_report(test_gen.classes, y_pred, target_names= classes))

model name - model name if basattn(model 'name') else 'model'

Tomato__Septoria_leaf_spot 0 0 0 0 0 0 0 0 0 0 0 177 0 0 0 0 0

Tomato___Target_Spot 0 0 0 0 0 0 0 0 0 0 0 1 140 0 0 0

healthy

Potato h

Tomato__Bacterial_spot Tomato__Early_blight Tomato__Late_blight Tomato__Late_blight

Predicted label

Tomato__Spider_mites Two-spotted_spider_mite 0 0 0 0 0 0 0 0 0 0 0 168 0 0 0 0

spot

Pepper, bell Bacterial

Pepper,

Tomato___Tomato__mosaic_virus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0 Tomato___healthy 0 0 0 0 0 0 0 0 0 0 0

epper,_bell__healthy Potato__Early_blight Potato__Late_blight

Рисунок 10. – Матрица ошибок для 15 классов

На тестовом стенде среднее время обработки одного изображения (224×224) составило ≈ 68 мс при размере батча = 1. (Рисунок 11а). Это соответствует примерно 15 fps, что позволяет применять модель в режиме реального времени для мониторинга состояния растений.

- 200

- 100

- 0

healthy

Tomato

Tomato_mosaic_virus

Tomato

Tomato___Target__ Tomato_Yellow_Leaf_Curl_Y Spider_mites Two-spotted_spider_

omato

0 0 0 0 159

mite Spot Virus

Septoria_leaf_spot

Tomato

ato

Рисунок 11. Результаты работы модели и образец поражённого листа: а — Время инференса,

б — Демонстрация результата.

На рисунке 11(б) приведён скриншот пользовательского интерфейса: после подачи на вход фотографии листа томата система выдаёт «Вид: Томаты» и «Болезнь: Листья, заражённые вирусом жёлтых листьев».

Исследование выполнено за счет гранта Российского научного фонда № 25-21-20073 (https://rscf.ru/project/25-21-20073/) и гранта администрации Волгоградской области

Литература

1. United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results / Statistical Papers – United Nations (Ser. A), Population and Vital Statistics Report. New York: United Nations, August 2022. 52 p. ISBN 978-9210014380. DOI: doi.org/10.18356/9789210014380

2. Nagarsheth S., Agbossou K., Henao N., Bendouma M. The Advancements in Agricultural Greenhouse Technologies: An Energy Management Perspective // Sustainability. 2025. Vol. 17. 3407. DOI: doi.org/10.3390/su17083407.

3. Кокиева Г. Е., Дондоков Ж. Ж. Исследование эффективности управления технологическим объектом теплицы // Международный журнал прикладных наук и технологий «Integral». 2022. № 4. С. 1054–1067. URL: cyberleninka.ru/article/n/issledovanie-effektivnosti-upravleniya-tehnologicheskimobektom-teplitsy

4. Егунов В. А., Королева И. Ю., Типаев Д. В. Алгоритмы движения мобильного робота с построением карты местности в реальном времени // Инженерный вестник Дона. – 2022. – № 4. URL: ivdon.ru/ru/magazine/archive/n4y2022/7570

5. 5. Буданов А. С., Егунов В. А. Использование углов Эйлера в инерциальных навигационных системах // Инженерный вестник Дона. – 2021. – № 7. URL: ivdon.ru/ru/magazine/archive/n7y2021/7072

6. Chen W.-H., Mattson N. S., You F. Intelligent control and energy optimization in controlled environment agriculture via nonlinear model predictive control of semi-closed greenhouse // Applied Energy. — 2022. — Vol. 320. — Article 119334. — ISSN 0306-2619. — DOI: 10.1016/j.apenergy.2022.119334

7. Platero-Horcajadas M., Pardo-Pina S., Cámara-Zapata J.-M., Brenes-Carranza J.-A., Ferrández-Pastor F.-J. Enhancing Greenhouse Efficiency: Integrating IoT and Reinforcement Learning for Optimized Climate Control Sensors. — 2024. — Vol. 24, no. 24. — Article 8109. doi.org/10.3390/s24248109

8. Jeon Y.-J., Kim J.Y., Hwang K.-S., Cho W.-J., Kim H.-J., Jung D.-H. Machine Learning-Powered Forecasting of Climate Conditions in Smart Greenhouse Containing Netted Melons Agronomy. — 2024. — Vol. 14. — Article 1070. doi.org/10.3390/agronomy14051070

9. Adesanya M. A., Obasekore H., Rabiu A., Na W.-H., Ogunlowo Q. O., Akpenpuun T. D., Kim M.-H., Kim H.-T., Kang B.-Y., Lee H.-W. Deep reinforcement learning for PID parameter tuning in greenhouse HVAC system

energy Optimization: A TRNSYS-Python cosimulation approach Expert Systems with Applications. — 2024. — Vol. 252, Part A.

References

1. United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results Statistical Papers United Nations (Ser. A), Population and Vital Statistics Report. New York: United Nations, August 2022. 52 p. ISBN 978-9210014380. DOI: doi.org/10.18356/9789210014380.

2. Nagarsheth, S.; Agbossou, K.; Henao, N.; Bendouma, M. Sustainability 2025, 17, 3407. DOI: doi.org/10.3390/su17083407.

3. Kokieva, G.E.; Dondokov, Zh.Zh. Mezhdunarodnyy zhurnal prikladnykh nauk i tekhnologiy "Integral" 2022, no. 4, 1054–1067. URL: cyberleninka.ru/article/n/issledovanie-effektivnosti-upravleniya-tehnologicheskim-obektom-teplitsy

4. Egunov, V.A.; Koroleva, I.Yu., Tipaev, D.V. Inzhenerny vestnik Dona 2022, no. 4. URL: ivdon.ru/ru/magazine/archive/n4y2022/7570

5. Budanov, A.S.; Egunov, V.A. Inzhenerny vestnik Dona 2021, no. 7. URL: ivdon.ru/ru/magazine/archive/n7y2021/7072

6. Chen, W.-H.; Mattson, N.S.; You, F. Applied Energy 2022, 320, 119334. ISSN 0306-2619. DOI: 10.1016/j.apenergy.2022.119334.

7. Platero-Horcajadas, M.; Pardo-Pina, S.; Cámara-Zapata, J.-M.; Brenes-Carranza, J.-A.; Ferrández-Pastor, F.-J. Sensors 2024, 24(24), 8109. DOI: doi.org/10.3390/s24248109.

 Jeon, Y.-J.; Kim, J.Y.; Hwang, K.-S.; Cho, W.-J.; Kim, H.-J.; Jung, D.-H. Agronomy 2024, 14, 1070. DOI: doi.org/10.3390/agronomy14051070.

9. Adesanya, M.A.; Obasekore, H.; Rabiu, A.; Na, W.-H.; Ogunlowo, Q.O.; Akpenpuun, T.D.; Kim, M.-H.; Kim, H.-T.; Kang, B.-Y.; Lee, H.-W. Expert Systems with Applications 2024, 252, Part A.

Дата поступления: 10.05.2026 Дата публикации: 24.06.2025